HP 10508 Spécifications - Page 7
Parcourez en ligne ou téléchargez le pdf Spécifications pour {nom_de_la_catégorie} HP 10508. HP 10508 42 pages. 10500 series
Également pour HP 10508 : Fiche technique (20 pages)
QuickSpecs
Overview
Dynamic Host Configuration Protocol (DHCP)
simplifies the management of large IP networks and supports client and server; DHCP Relay enables DHCP operation across
subnets
Domain Name System (DNS)
provides a distributed database that translates domain names and IP addresses, which simplifies network design; supports
client and server
Layer 3 routing
Static IPv4 routing
provides simple manually configured IPv4 routing
Routing Information Protocol (RIP)
uses a distance vector algorithm with UDP packets for route determination; supports RIPv1 and RIPv2 routing; includes loop
protection
Open shortest path first (OSPF):
delivers faster convergence; uses this link-state routing Interior Gateway Protocol (IGP), which supports ECMP, NSSA, and MD5
authentication for increased security and graceful restart for faster failure recovery
Intermediate system to intermediate system (IS-IS)
uses a path vector Interior Gateway Protocol (IGP), which is defined by the ISO organization for IS-IS routing and extended by
IETF RFC 1195 to operate in both TCP/IP and the OSI reference model (Integrated IS-IS)
Border Gateway Protocol 4 (BGP-4)
delivers an implementation of the Exterior Gateway Protocol (EGP) utilizing path vectors; uses TCP for enhanced reliability for
the route discovery process; reduces bandwidth consumption by advertising only incremental updates; supports extensive
policies for increased flexibility; scales to very large networks
Policy-based routing
makes routing decisions based on policies set by the network administrator
IP performance optimization
provides a set of tools to improve the performance of IPv4 networks; includes directed broadcasts, customization of TCP
parameters, support of ICNP error packets, and extensive display capabilities
Unicast Reverse Path Forwarding (uRPF)
limits erroneous or malicious traffic in accordance with RFC 3074
Static IPv6 routing
provides simple, manually configured IPv6 routing
Dual IP stack
maintains separate stacks for IPv4 and IPv6 to ease the transition from an IPv4-only network to an IPv6-only network design
Routing Information Protocol next generation (RIPng)
extends RIPv2 to support IPv6 addressing
OSPFv3
provides OSPF support for IPv6
IS-IS for IPv6
extends IS-IS to support IPv6 addressing
BGP+
extends BGP-4 to support Multiprotocol BGP (MBGP), including support for IPv6 addressing
Multiprotocol Label Switching (MPLS)
uses BGP to advertise routes across Label Switched Paths (LSPs), but uses simple labels to forward packets from any Layer 2 or
Layer 3 protocol, thus reducing complexity and increasing performance; supports graceful restart for reduced failure impact;
supports LSP tunneling and multilevel stacks
Multiprotocol Label Switching (MPLS) Layer 3 VPN
allows Layer 3 VPNs across a provider network; uses MP-BGP to establish private routes for increased security; supports RFC
2547bis multiple autonomous system VPNs for added flexibility
DA - 14167 North America — Version 20 — December 9, 2013
HP 10500 Switch Series
Page 7