Cypress Semiconductor CY7C1364C Fiche technique - Page 5

Parcourez en ligne ou téléchargez le pdf Fiche technique pour {nom_de_la_catégorie} Cypress Semiconductor CY7C1364C. Cypress Semiconductor CY7C1364C 19 pages. 9-mbit (256k x 32) pipelined sync sram

Pin Definitions
(continued)
Name
TQFP
V
4, 11, 20, 27, 54, 61, 70, 77
DDQ
V
5, 10, 21, 26, 55, 60, 71, 76
SSQ
MODE
NC
1, 14, 16, 30, 38, 39, 42,
51, 66, 80

Functional Overview

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock.
The CY7C1364C supports secondary cache in systems
utilizing either a linear or interleaved burst sequence. The
interleaved burst order supports Pentium and i486™
processors. The linear burst sequence is suited for processors
that utilize a linear burst sequence. The burst order is user
selectable, and is determined by sampling the MODE input.
Accesses can be initiated with either the Processor Address
Strobe (ADSP) or the Controller Address Strobe (ADSC).
Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
Byte Write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BW
Enable (GW) overrides all Byte Write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed Write circuitry.
Three synchronous Chip Selects (CE
asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE
is HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW,
(2) CE
, CE
, CE
are all asserted active, and (3) the Write
1
2
3
signals (GW, BWE) are all deasserted HIGH. ADSP is ignored
if CE
is HIGH. The address presented to the address inputs
1
(A) is stored into the address advancement logic and the
address register while being presented to the memory array.
The corresponding data is allowed to propagate to the input of
the output registers. At the rising edge of the next clock the
data is allowed to propagate through the output register and
onto the data bus within t
exception occurs when the SRAM is emerging from a
deselected state to a selected state, its outputs are always
tri-stated during the first cycle of the access. After the first cycle
of the access, the outputs are controlled by the OE signal.
Consecutive single Read cycles are supported. Once the
SRAM is deselected at clock rise by the chip select and either
ADSP or ADSC signals, its output will tri-state immediately.
Document #: 38-05689 Rev. *E
I/O
I/O Power
Supply
I/O Ground
31
Input-
Static
) inputs. A Global Write
[A:D]
, CE
, CE
) and an
1
2
3
if OE is active LOW. The only
CO
Description
Power supply for the I/O circuitry.
Ground for the I/O circuitry.
Selects Burst Order. When tied to GND selects linear burst sequence.
When tied to V
or left floating selects interleaved burst sequence.
DD
This is a strap pin and should remain static during device operation.
Mode pin has an internal pull-up.
No Connects. Not internally connected to the die
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and
(2) CE
, CE
, CE
1
2
3
presented to A is loaded into the address register and the
address advancement logic while being delivered to the RAM
array. The Write signals (GW, BWE, and BW
inputs are ignored during this first cycle.
ADSP-triggered Write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQ inputs is written into the corre-
sponding address location in the memory array. If GW is HIGH,
then the Write operation is controlled by BWE and BW
signals. The CY7C1364C provides Byte Write capability that
is described in the Write Cycle Descriptions table. Asserting
the Byte Write Enable input (BWE) with the selected Byte
Write (BW
) input, will selectively write to only the desired
[A:D]
bytes. Bytes not selected during a Byte Write operation will
remain unaltered. A synchronous self-timed Write mechanism
has been provided to simplify the Write operations.
Because the CY7C1364C is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQ are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.
1
Single Write Accesses Initiated by ADSC
ADSC Write accesses are initiated when the following condi-
tions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deasserted HIGH, (3) CE
and (4) the appropriate combination of the Write inputs (GW,
BWE, and BW
) are asserted active to conduct a Write to
[A:D]
the desired byte(s). ADSC-triggered Write accesses require a
single clock cycle to complete. The address presented to A is
loaded
into
the
advancement logic while being delivered to the memory array.
The ADV input is ignored during this cycle. If a global Write is
conducted, the data presented to the DQ is written into the
corresponding address location in the memory core. If a Byte
Write is conducted, only the selected bytes are written. Bytes
not selected during a Byte Write operation will remain
unaltered. A synchronous self-timed Write mechanism has
been provided to simplify the Write operations.
Because the CY7C1364C is a common I/O device, the Output
Enable (OE) must be deasserted HIGH before presenting data
to the DQ inputs. Doing so will tri-state the output drivers. As
a safety precaution, DQs are automatically tri-stated whenever
a Write cycle is detected, regardless of the state of OE.
CY7C1364C
are all asserted active. The address
[A:D]
, CE
, CE
are all asserted active,
1
2
3
address
register
and
the
Page 5 of 18
) and ADV
[A:D]
address
[+] Feedback