Motorola GP340 ATEX 서비스 정보 - 페이지 10

{카테고리_이름} Motorola GP340 ATEX에 대한 서비스 정보을 온라인으로 검색하거나 PDF를 다운로드하세요. Motorola GP340 ATEX 26 페이지. Professional radio, power distribution and controller
Motorola GP340 ATEX에 대해서도 마찬가지입니다: 사양 시트 (5 페이지), 사용자 설명서 (31 페이지), 사양 시트 (2 페이지), 사용자 설명서 (30 페이지), 사용자 설명서 (30 페이지), 기본 사용 설명서 (10 페이지), 서비스 정보 (32 페이지), 서비스 정보 (30 페이지), 서비스 정보 (24 페이지), 서비스 정보 (31 페이지), 서비스 정보 (43 페이지), 서비스 정보 (30 페이지)

Motorola GP340 ATEX 서비스 정보
2-2
The PRF1507 LDMOS PA is capable of supplying an output power of 7W with an input signal of
0.3W. The current drain would typically be 1300mA while operating in the frequency range of
300-350MHz. The power output can be varied by changing the biasing voltage.
2.2

Antenna Switch

The antenna switch circuit consists of two PIN diodes (CR101 and CR102), a pi network (C107,
L104 and C106), and two current limiting resistors (R101, R170). In the transmit mode, B+ at PCIC
(U102) pin 23 will go low and turn on Q111 where a B+ bias is applied to the antenna switch circuit
to bias the diodes "on". The shunt diode (CR102) shorts out the receiver port, and the pi network,
which operates as a quarter wave transmission line, transforms the low impedance of the shunt
diode to a high impedance at the input of the harmonic filter. In the receive mode, the diodes are
both off, and hence, there exists a low attenuation path between the antenna and receiver ports.
2.3

Harmonic Filter

The harmonic filter consists of C104, L102, C103, L101 and C102. The design of the harmonic filter
for VHF is that of a modified Zolotarev design. It has been optimized for efficiency of the power
module. This type of filter has the advantage that it can give a greater attenuation in the stop-band
for a given ripple level. The harmonic filter insertion loss is typically less than 1.2dB.
2.4

Antenna Matching Network

A matching network which is made up of L116 is used to match the antenna's impedance to the
harmonic filter. This will optimize the performance of the transmitter and receiver into an antenna.
2.5

Power Control Integrated Circuit (PCIC)

The transmitter uses the Power Control IC (PCIC), U102 to regulate the power output of the radio.
The current to the final stage of the power module is supplied through R101, which provides a
voltage proportional to the current drain. This voltage is then fedback to the Automatic Level
Control (ALC) within the PCIC to regulate the output power of the transmitter.
The PCIC has internal digital to analog converters (DACs) which provide the reference voltage of
the control loop. The reference voltage level is programmable through the SPI line of the PCIC.
There are resistors and integrators within the PCIC, and external capacitors (C133, C134 and C135)
in controlling the transmitter rising and falling time. These are necessary in reducing the power
splatter into adjacent channels.
CR105 and its associated components are part of the temperature cut back circuitry. It senses the
printed circuit board temperature around the transmitter circuits and output a DC voltage to the
PCIC. If the DC voltage produced exceeds the set threshold in the PCIC, the transmitter output
power will be reduced so as to reduce the transmitter temperature.
THEORY OF OPERATION