HP StorageWorks 1000 - Modular Smart Array Technology Brief - Page 11

Browse online or download pdf Technology Brief for Switch HP StorageWorks 1000 - Modular Smart Array. HP StorageWorks 1000 - Modular Smart Array 15 pages. Power supply, computer
Also for HP StorageWorks 1000 - Modular Smart Array: Network Manual (8 pages), Support List (34 pages), Error Prevention Manual (12 pages), Technical White Paper (12 pages), Firmware Update (9 pages), Overview (20 pages), Installation Manual (2 pages), Support Telephone Numbers (19 pages), Reference Manual (48 pages), Administration Manual (40 pages), Release Note (13 pages), Quick Start Instructions (8 pages), Quick Start Manual (7 pages), Release Note (5 pages), Replacement Instructions (4 pages), White Paper (13 pages), Quickspecs (17 pages), Specification (49 pages), Getting Started Manual (34 pages), Installation (4 pages), Installation Manual (18 pages), Disassembly Instructions Manual (9 pages), Programming Manual (8 pages)

HP StorageWorks 1000 - Modular Smart Array Technology Brief
Rapid Virtualization Indexing is the AMD implementation of nested page tables technology which
allows virtual machines to manage memory more directly. Rapid Virtualization Indexing eliminates
the time the hypervisor spends managing shadow pages in software, and accelerates this task with
much faster hardware-based page management. This hardware-based management reduces
hypervisor overhead and improves the speed of the guest OS.
Figure 5. Hardware-based management using nested page tables reduces hypervisor overhead, compared to
software-based management of shadow page tables, thus improving the speed of the guest OS.

Average CPU Power metric

Because of rising power and cooling costs in data centers, organizations are adopting a new
paradigm that focuses on maximizing system energy efficiency down to the component level. This is
especially true for the processor, which represents a significant percentage of power use and heat
generation. AMD's introduction of power management enhancements such as Dual Dynamic Power
Management and Independent Dynamic Core technology help to reduce processor power use.
However, if data center planners do not know the actual power required by the processor, they
must use the maximum power ratings listed in the engineering specifications.
To accurately measure processor power consumption, its power use must be isolated from the
power use of other components on the motherboard. To accomplish this, AMD developed specially
instrumented motherboards with voltage regulators that deliver power to individual processor
power rails. This special instrumentation allows AMD to measure processor power use of all
processor rails during standard test workloads such as floating point, integer, Web, and
transaction processing.
From these test results, AMD developed an average CPU power (ACP) metric to more accurately
estimate the power consumption of AMD Opteron processors during peak workloads (Table 3). The
ACP metric allows data centers to more accurately forecast their power requirements and reap the
benefits of lower power and cooling costs.
11