Casio CFX-9950GB PLUS Grafiek Handleiding - Pagina 9

Blader online of download pdf Grafiek Handleiding voor {categorie_naam} Casio CFX-9950GB PLUS. Casio CFX-9950GB PLUS 12 pagina's. 6. matrix calculations
Ook voor Casio CFX-9950GB PLUS: Software Handleiding (20 pagina's), Gebruikershandleiding (18 pagina's), Communicatiehandleiding (13 pagina's), Programma-handleiding (18 pagina's), Lees deze eerste handleiding (13 pagina's), Functiehandboek (14 pagina's), Grafiek Handleiding (8 pagina's), Grafiek Handleiding (6 pagina's), Grafiek Handleiding (12 pagina's), Grafiek Handleiding (12 pagina's), Grafiek Handleiding (12 pagina's), Grafiek Handleiding (10 pagina's), Handleiding voor berekeningen (13 pagina's), Handleiding voor berekeningen (18 pagina's), Handleiding voor berekeningen (15 pagina's), Complexe getallen handleiding (6 pagina's), Handleiding voor berekeningen (6 pagina's), Handleiding voor berekeningen (20 pagina's)

Casio CFX-9950GB PLUS Grafiek Handleiding
Example 2
Draw a graph of
on the horizontal axis, and with the points unconnected.
Use the same View Window parameters as those provided in
Example 1.
6(TABL)6(G·PLT)
(Selects plot type.)
6(Σ
a
)
n
(Draws graph with Σ
axis.)
• To input a different recursion formula after a graph is drawn, press ! Q.
This displays the Recursion Menu where you can input a new formula.
k k k k k Drawing a Convergence/Divergence Graph (WEB graph)
With this feature, you can draw a graph of
terms of linear recursion between two terms, substituted respectively for
y
f
x
the function
=
(
). The resulting graph can then be viewed to determine whether
or not the graph is convergent or divergent.
Example 1
To determine whether or not the recursion formula
a
+ 3
is convergent or divergent.
n
Use the following table range.
Start = 0
a
= 0.01
0
b
= 0.11
0
Use the following View Window parameters.
Xmax = 1
Xscale = 1
This example assumes that the following two recursion formulas are already
stored in memory.
1. Press 6(TABL) 4(WEB) to draw the graph.
Editing Tables and Drawing Graphs
+ 1 with Σ
a
a
= 2
n
n
+1
a
on the vertical
n
a
End
= 6
a
Str = 0.01
n
b
Str = 0.11
= 0
Ymax = 1
Yscale = 1
a
on the vertical axis and
n
f
a
a
=
(
) where
and
n
+1
n
n
+1
= 0
16 - 3
n
a
are the
n
y
x
and
in
a
a
2
= -3
n
n
+1
225