AudioQuest Niagara 3000AP Instrukcja obsługi - Strona 9

Przeglądaj online lub pobierz pdf Instrukcja obsługi dla Sprzęt nagrywający AudioQuest Niagara 3000AP. AudioQuest Niagara 3000AP 16 stron. Low-z power / noise-dissipation system

Operation and Continuous Use
Power Switch | Circuit Breaker and LED Power Indicator
Once the AC cords are properly connected to the AC source tap, and the components are connected to the
appropriate outlet banks, it is safe to energize the Niagara 3000AP. On the right-hand side of the Niagara 3000AP's
front panel, there is a black rocker switch. Firmly press the rocker switch so that its upper portion is flush with the
front panel. Typically, within a couple of seconds, you should hear an audible "clack" sound(s) from one or more
relays within the Niagara 3000AP. At the same time, the front-panel LED power indictor will glow blue, signifying
that the unit is operational. (If this does not occur, see the "Trouble-Shooting Guide" in this manual.)
Rear-Panel Power Correction Switch | Niagara 3000AP Current Draw
The default position for this switch should always be "energized" or "1"—even for applications in which there
are no power amplifiers of any kind powered by the Niagara 3000AP. Defaulting to "energized"/"1" serves two
functions: It activates the full Transient Power Correction Circuit for power amplifiers that would be energized
by outlets 1 or 2, and also provides a portion of the Level-X Linear Noise-Dissipation Circuit for outlets 3 through
7. Although no damage to the Niagara or the connected components will occur, performance will be somewhat
compromised when this switch is not set to the "energized"/"1" position.
The "0" setting of the rear-panel switch disengages a portion of the transient power correction circuit. The switch
was created for instances in which there is either extraordinary amounts of harmonic distortion present on the
utility AC power line (creating easily audible acoustic buzzing from the listening position—rare), or there is some
concern about smart-meter power consumption. These potential issues can be immediately alleviated by placing
the rear-panel switch in the "0" position. The Transient Power Correction Circuit creates a reactive current draw of
as much as 4 to 5 amps RMS at idle (real-world draw is a small fraction of an amp), and electrical technicians who
connect a current probe to a product such as this are frequently alarmed: They suspect that the product is either
broken or that it is drawing a distressingly high amount of current from the wall outlet (akin to a power amplifier
left in full operational mode).
This is actually far from the truth. If the Niagara 3000AP was consuming that much current (or even 30% of that
level), it would need to dissipate the energy loss in heat. It would be quite warm (even hot) to the touch, just like
most power amplifiers while in operation. In fact, the Niagara 3000AP runs cool, precisely because this current
reading is false. The circuit utilizes massive capacitive reactance across the AC line, which, akin to a battery, will
both absorb and immediately release the current several times per second. Further, when incorporated with
power supplies such as those found in power amplifiers, the current readings actually come down. This is due to
what's known as a vector load, and it's quite dynamic in an audio/video system. In this scenario, there is one thing
that can run somewhat warmer than it might otherwise: the AC cord that supplies power to the Niagara 3000AP.
This is because the wiring and the circuit breaker that supply power to Niagara 3000AP simply look at RMS current
and do not distinguish between reactive loads, resistive loads, or inductive loads, but your utility does.
This circuit and many like it have been utilized for many years, and, when tested into buildings with absolutely
no loads present aside from the transient power correction circuit, there was virtually zero power draw from the
utilities' power meter. Still, in an age where so-called "smart meters" are omnipresent, and some utilities may or
may not change their standards for "what type of power or current is suitable for billing, " we have gone to great
lengths to offer an alternative to those who may be concerned, but who nevertheless wish to achieve the best
possible audio/video performance.
9