Casio CFX-9950GB PLUS Hesaplamalar Kılavuzu - Sayfa 6

Hesap Makinesi Casio CFX-9950GB PLUS için çevrimiçi göz atın veya pdf Hesaplamalar Kılavuzu indirin. Casio CFX-9950GB PLUS 15 sayfaları. 6. matrix calculations
Ayrıca Casio CFX-9950GB PLUS için: Yazılım Kılavuzu (20 sayfalar), Kullanıcı Kılavuzu (18 sayfalar), İletişim Kılavuzu (13 sayfalar), Program Kılavuzu (18 sayfalar), Önce Bu Kılavuzu Okuyun (13 sayfalar), İşlev Kılavuzu (14 sayfalar), Grafik Kılavuzu (8 sayfalar), Grafik Kılavuzu (6 sayfalar), Grafik Kılavuzu (12 sayfalar), Grafik Kılavuzu (12 sayfalar), Grafik Kılavuzu (12 sayfalar), Grafik Kılavuzu (12 sayfalar), Grafik Kılavuzu (10 sayfalar), Hesaplamalar Kılavuzu (13 sayfalar), Hesaplamalar Kılavuzu (18 sayfalar), Karmaşık Sayılar Kılavuzu (6 sayfalar), Hesaplamalar Kılavuzu (6 sayfalar), Hesaplamalar Kılavuzu (20 sayfalar)

Casio CFX-9950GB PLUS Hesaplamalar Kılavuzu

3-3 Quadratic Differential Calculations

After displaying the function analysis menu, you can input quadratic differentials
using either of the two following formats.
Quadratic differential calculations produce an approximate differential value using
the following second order differential formula, which is based on Newton's
polynomial interpretation.
In this expression, values for "sufficiently small increments of
calculated using the following formula, with the value of
= 1, 2, 3 and so on.
The calculation is finished when the value of
calculated using the last value of
h
reached.
u u u u u To perform a quadratic differential calculation
Input the function f(
58
2
2
3(
d
dx
f(x)
/
)
2
d
––– ( f (x), a, n)
2
dx
f(x – 2h) + 16 f(x – h) – 30 f(x) + 16 f(x + h) – f(x + 2h)
f''(x)
–––––––––––––––––––––––––––––––––––––––––––––––
=
1
h = ––––
m
5
calculated using the current value of
• Normally, you should not input a value for
n
input a value for
when required for calculation precision.
• Inputting a larger value for
Example
To determine the quadratic differential coefficient at the point
x
where
Here we will use a final boundary value of n = 6.
x
).
AK4(CALC)3(
evx+v-g,
,
a
,
n
)
Final boundary (
Differential coefficient point
2
d
––– f (a)
2
dx
m
, and the value of
m
are identical before the upper
n
does not necessarily produce greater precision.
= 3 for the function
d
dx
) vMd+
2
/
2
[OPTN]-[CALC]-[d
n
= 1 to 15)
12h
2
x
" are sequentially
m
being substituted as
f " (x)
based on the value of
f " (x)
based on the value of
n
. It is recommended that you only
y
x
3
x
2
x
=
+ 4
+
– 6
2
2
/dx
]
m
h
n
digit is