Casio fx-9750G PLUS Посібник з розрахунків - Сторінка 6

Переглянути онлайн або завантажити pdf Посібник з розрахунків для Калькулятор Casio fx-9750G PLUS. Casio fx-9750G PLUS 15 сторінок. Graphing calculator
Також для Casio fx-9750G PLUS: Каталог продукції (16 сторінок), Посібник з комунікацій (13 сторінок), Посібник користувача програми (18 сторінок), Прочитайте цей перший посібник (13 сторінок), Посібник з експлуатації (14 сторінок), Посібник з графіки (8 сторінок), Посібник з графіки (6 сторінок), Посібник з графіки (12 сторінок), Посібник з графіки (12 сторінок), Посібник з графіки (12 сторінок), Посібник з графіки (12 сторінок), Посібник з графіки (10 сторінок), Посібник з розрахунків (13 сторінок), Посібник з розрахунків (18 сторінок), Посібник з комплексних чисел (6 сторінок), Посібник з розрахунків (6 сторінок), Посібник з розрахунків (20 сторінок), Посібник користувача (13 сторінок)

Casio fx-9750G PLUS Посібник з розрахунків

3-3 Quadratic Differential Calculations

After displaying the function analysis menu, you can input quadratic differentials
using either of the two following formats.
Quadratic differential calculations produce an approximate differential value using
the following second order differential formula, which is based on Newton's
polynomial interpretation.
In this expression, values for "sufficiently small increments of
calculated using the following formula, with the value of
= 1, 2, 3 and so on.
The calculation is finished when the value of
calculated using the last value of
h
reached.
u u u u u To perform a quadratic differential calculation
Input the function f(
58
2
2
3(
d
dx
f(x)
/
)
2
d
––– ( f (x), a, n)
2
dx
f(x – 2h) + 16 f(x – h) – 30 f(x) + 16 f(x + h) – f(x + 2h)
f''(x)
–––––––––––––––––––––––––––––––––––––––––––––––
=
1
h = ––––
m
5
calculated using the current value of
• Normally, you should not input a value for
n
input a value for
when required for calculation precision.
• Inputting a larger value for
Example
To determine the quadratic differential coefficient at the point
x
where
Here we will use a final boundary value of n = 6.
x
).
AK4(CALC)3(
evx+v-g,
,
a
,
n
)
Final boundary (
Differential coefficient point
2
d
––– f (a)
2
dx
m
, and the value of
m
are identical before the upper
n
does not necessarily produce greater precision.
= 3 for the function
d
dx
) vMd+
2
/
2
[OPTN]-[CALC]-[d
n
= 1 to 15)
12h
2
x
" are sequentially
m
being substituted as
f " (x)
based on the value of
f " (x)
based on the value of
n
. It is recommended that you only
y
x
3
x
2
x
=
+ 4
+
– 6
2
2
/dx
]
m
h
n
digit is